ÌâÄ¿ÄÚÈÝ
14£®£¨1£©Í¼ÏóÓëxÖá½»µãµÄ×ø±êÊÇ£¨-$\frac{1}{2}$£¬0£©£¬£¨$\frac{3}{2}$£¬0£©£®
£¨2£©µ±x=-$\frac{1}{2}$»ò$\frac{3}{2}$ʱ£¬y=0£»·½³Ìx2-x-$\frac{3}{4}$=0µÄ½âÊÇx1=-$\frac{1}{2}$£¬x2=$\frac{3}{2}$
£¨3£©µ±xÈ¡-$\frac{1}{2}$£¼x£¼$\frac{3}{2}$ʱ£¬y£¼0£»µ±xÈ¡x£¼-$\frac{1}{2}$»òx£¾$\frac{3}{2}$ʱ£¬y£¾0
£¨4£©x2-x-$\frac{3}{4}$£¼0µÄ½â¼¯ÊÇ-$\frac{1}{2}$£¼x£¼$\frac{3}{2}$£¬x2-x-$\frac{3}{4}$£¾0µÄ½â¼¯ÊÇx£¼-$\frac{1}{2}$»òx£¾$\frac{3}{2}$£®
·ÖÎö £¨1£©Áîy=0£¬½â¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬È»ºóд³öÓëxÖáµÄ½»µã×ø±ê¼´¿É£»
£¨2£©¸ù¾Ý£¨1£©µÄÇó½â½á¹û½â´ð¼´¿É£»
£¨3£©¸ù¾Ýº¯ÊýͼÏó·Ö±ðд³öxÖáÏ·½ºÍÉÏ·½²¿·ÖµÄxµÄȡֵ·¶Î§¼´¿É£»
£¨4£©¸ù¾Ý£¨3£©µÄ½áÂÛ½â´ð¼´¿É£®
½â´ð ½â£º£¨1£©Áîy=0£¬Ôòx2-x-$\frac{3}{4}$=0£¬
½âµÃx1=-$\frac{1}{2}$£¬x2=$\frac{3}{2}$£¬
ËùÒÔ£¬Í¼ÏóÓëxÖáµÄ½»µã×ø±êΪ£¨-$\frac{1}{2}$£¬0£©£¬£¨$\frac{3}{2}$£¬0£©£»
£¨2£©µ±x=-$\frac{1}{2}$»ò$\frac{3}{2}$ʱ£¬y=0£»·½³Ìx2-x-$\frac{3}{4}$=0µÄ½âÊÇx1=-$\frac{1}{2}$£¬x2=$\frac{3}{2}$£»
£¨3£©µ±xÈ¡-$\frac{1}{2}$£¼x£¼$\frac{3}{2}$ʱ£¬y£¼0£»µ±xÈ¡x£¼-$\frac{1}{2}$»òx£¾$\frac{3}{2}$ʱ£¬y£¾0£»
£¨4£©x2-x-$\frac{3}{4}$£¼0µÄ½â¼¯ÊÇ-$\frac{1}{2}$£¼x£¼$\frac{3}{2}$£¬x2-x-$\frac{3}{4}$£¾0µÄ½â¼¯ÊÇx£¼-$\frac{1}{2}$»òx£¾$\frac{3}{2}$£®
¹Ê´ð°¸Îª£º£¨1£©£¨-$\frac{1}{2}$£¬0£©£¬£¨$\frac{3}{2}$£¬0£©£»£¨2£©-$\frac{1}{2}$»ò$\frac{3}{2}$£»x1=-$\frac{1}{2}$£¬x2=$\frac{3}{2}$£»£¨3£©-$\frac{1}{2}$£¼x£¼$\frac{3}{2}$£»x£¼-$\frac{1}{2}$»òx£¾$\frac{3}{2}$£¬£¨4£©-$\frac{1}{2}$£¼x£¼$\frac{3}{2}$£»x£¼-$\frac{1}{2}$»òx£¾$\frac{3}{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýÓë²»µÈʽ×飬Å×ÎïÏßÓëxÖáµÄ½»µãÎÊÌ⣬ÊýÐνáºÏÊÇÊýѧÖеÄÖØÒªË¼ÏëÖ®Ò»£¬½â¾öº¯ÊýÎÊÌâ¸üÊÇÈç´Ë£¬Í¬Ñ§ÃÇÒªÒýÆðÖØÊÓ£®
| A£® | $\frac{12£¨x-y£©}{15£¨x+y£©}$ | B£® | $\frac{{y}^{2}-{x}^{2}}{x+y}$ | ||
| C£® | $\frac{{x}^{2}+{y}^{2}}{{x}^{2}y+x{y}^{2}}$ | D£® | $\frac{{x}^{2}-{y}^{2}}{£¨x+y£©^{2}}$ |