题目内容
函数 中,自变量x的取值范围是( )
A. x≠0 B. x<1 C. x>1 D. x≠1
在菱形ABCD中,∠BAD=60°
(1)如图1,点E为线段AB的中点,连接DE、CE,若AB=4,求线段EC的长;
(2)如图2,M为线段AC上一点(不与A、C重合),以AM为边向上构造等边三角形AMN,连接NC、DM,Q为线段NC的中点,连接DQ、MQ,判断DM与DQ的数量关系,并证明你的结论.
在下列条件下,不能判定△ABC≌△A′B′C′是( )
A. ∠A=∠A′,AB=A′B′,BC=B′C′ B. ∠A=∠A′,∠C=∠C′,AC=A′C′
C. ∠B=∠B′,∠C=∠C′,AC=A′C′ D. BA=B′A′,BC=B′C′,AC=A′C′
如图,在平面直角坐标系中,反比例函数(x>0)与正比例函数y=kx、 (k>1)的图象分别交于点A、B,若∠AOB=45°,则△AOB的面积是________.
一组数据:2,5,3,1,6,则这组数据的中位数是________.
如图,已知四边形ABCD中,AD∥BC,∠C=90°,P是CD上一点,BH⊥AP于H,BH=BC=CD
(1)求证:∠ABP=45°;
(2)若BC=20,PC=12,求AP的长.
如图,正方形ABCD中,E在BC上,BE=2,CE=1.点P在BD上,则PE与PC的和的最小值为__.
如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16m,AE=8m,抛物线的顶点C到ED的距离是11m,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.
(1)求抛物线的解析式;
(2)已知从某时刻开始的40h内,水面与河底ED的距离h(单位:m)随时间t(单位:h)的变化满足函数关系h=-(t-19)2+8(0≤t≤40)且当水面到顶点C的距离不大于5m时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?
不等式组的解集为( )
A. x>-1 B. x<3 C. x<-1或x>3 D. -1<x<3