题目内容

能够铺满地面的正多边形组合是


  1. A.
    正三角形和正五边形
  2. B.
    正方形和正六边形
  3. C.
    正方形和正五边形
  4. D.
    正五边形和正十边形
D
分析:正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.
解答:A、正五边形和正三边形内角分别为108°、60°,由于60m+108n=360,得m=6-n,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;
B、正方形、正六边形内角分别为90°、120°,不能构成360°的周角,故不能铺满,故此选项错误;
C、正方形、正五边形内角分别为90°、108°,当90n+108m=360°,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;
D、正五边形和正十边形内角分别为108、144,两个正五边形与一个正十边形能铺满地面,故此选项正确.
故选D.
点评:此题主要考查了平面镶嵌,两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网