题目内容
若二次函数y=ax2+bx+c的x与y的部分对应值如表,则当x=-1时,y的值为 .
![]()
-3.
【解析】
试题分析:由表可知,抛物线的对称轴为x=-3,顶点为(-3,5),再用待定系数法求得二次函数的解析式,再把x=-1代入即可求得y的值.
试题解析:设二次函数的解析式为y=a(x-h)2+k,
∵当x=-4或-2时,y=3,由抛物线的对称性可知h=-3,k=5,
∴y=a(x+3)2+5,
把(-2,3)代入得,a=-2,
∴二次函数的解析式为y=-2(x+3)2+5,
当x=-1时,y=-3.
考点:待定系数法求二次函数解析式.
考点分析: 考点1:二次函数 定义:一般地,如果
①所谓二次函数就是说自变量最高次数是2;
②二次函数
③二次函数
(1)一般式:
(2)顶点式:
(3)当抛物线
二次函数的一般形式的结构特征:
①函数的关系式是整式;
②自变量的最高次数是2;
③二次项系数不等于零。 二次函数的判定:
二次函数的一般形式中等号右边是关于自变量x的二次三项式;
当b=0,c=0时,y=ax2是特殊的二次函数;
判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成
- 题型:
- 难度:
- 考核:
- 年级:
练习册系列答案
相关题目