题目内容
如图所示,AB∥CD,∠CAB=116°,∠E=40°,则∠D的度数是( )
A. 24° B. 26° C. 34° D. 22°
有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.
小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”
(1)小静的解法是从步骤 开始出现错误的.
(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)
关于x的不等式组的整数解有4个,那么a的取值范围( )
A. 4<a<6 B. 4≤a<6 C. 4<a≤6 D. 2<a≤4
已知当x=m和x=n时,多项式x2﹣4x+1的值相等,且m≠n,则当x=m+n﹣3时多项式x2﹣4x+1的值为_____.
如图,已知点是第一象限内横坐标为的一个定点,轴于点,交直线于点,若点是线段上的一个动点,以为一边作等边三角形(顺时针),取线段的中点,当点从点运动到点时,点运动的路径长是( ).
A. B. C. D.
如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣4,2)、(1,﹣4),且AD∥x轴,交y轴于M点,AB交x轴于N.
(1)求B、D两点坐标和长方形ABCD的面积;
(2)一动点P从A出发(不与A点重合),以个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;
(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.
如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).
(1)写出点A、B的坐标:
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).
(3)△ABC的面积为 .
如图,点E在△ABC的外部,点D边BC上,DE交AC于点F,若∠1=∠2,AE=AC,BC=DE.
(1)求证:AB=AD;
(2)若∠1=60°,判断△ABD的形状,并说明理由.
下列运算正确的是( )
A. (a3)2=a5 B. a2•a3=a5 C. a6÷a2=a3 D. 3a2﹣2a2=1