题目内容
如图,是一条抛物线的图象,则其解析式为( )
A. y=x2﹣2x+3 B. y=x2﹣2x﹣3 C. y=x2+2x+3 D. y=x2+2x+3
如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:
(1)如果标注1、2的正方形边长分别为1,2,第3个正方形的边长= ;第5个正方形的边长= ;
(2)如果标注1、2的正方形边长分别为x,y,第10个正方形的边长= .(用含x、y的代数式表示)
若分式方程无解,则a的值为( )
A. 0 B. -1 C. 0或-1 D. 1或-1
当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为_____.
已知抛物线y=x2﹣x﹣1与x轴的一个交点为(a,0),则代数式a2﹣a+2018的值为( )
A. 2017 B. 2018 C. 2019 D. 2020
工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?
二次函数y=x2+4x﹣1的最小值是_____.
某企业接到一批酸奶生产任务,按要求在16天内完成,规定这批酸奶的出厂价为每瓶8元,为按时完成任务,该企业招收了新工人小孙,设小孙第x天生产的酸奶数量为y瓶,y与x满足下列关系式:
(1)小孙第几天生产的酸奶数量为520瓶?
(2)如图,设第x天每瓶酸奶的成本是p元,已知p与x之间的关系可以用图中的函数图象来刻画.若小孙第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价一成本)
(3)设(2)小题中第m天利润达到最大值,若要使第m+1天的利润比第m天的润至少多50元,则第(m+1)天每瓶酸奶至少应提价几元?
已知二次函数y=ax2+bx+c的图象如图所示,则下列结论:①ac>0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中正确的结论有( )
A. ①③ B. ②③ C. ①④ D. ②④