题目内容
如图,四边形ABCD是正方形,△ADE绕着点A旋转90°后到达△ABF的位置,连接EF,则△AEF的形状是( )
A. 等腰三角形 B. 直角三角形
C. 等腰直角三角形 D. 等边三角形
问题提出
如图①,、是⊙的两条弦, , 是的中点, ,垂足为.
求证: .
小敏在解答此题时,利用了“补短法”进行证明,她的方法如下:
如图②,延长至,使,连接、、、、.
(请你在下面的空白处完成小敏的证明过程.)
推广运用
如图③,等边内接于⊙, . 是上一点, , ,垂足为,则的周长是__________.
拓展研究
如图④,若将“问题提出”中的“是的中点”改成“是的中点”,其余条件不变,“”这一结论还成立吗?若成立,请说明理由;若不成立,写出、、三者之间存在的关系并说明理由.
若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是( )
A. B. C. D.
在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列四个结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△AED的周长是9.其中正确的结论是__(把你认为正确结论的序号都填上.)
如图,△ABC中,将△ABC绕点A顺时针旋转40°后,得到△AB′C′,且C′在边BC上,则∠AC′C的度数为( )
A. 50° B. 60° C. 70° D. 80°
一元二次方程x(x﹣2)=0的解是( )
A. x=0 B. x1=2 C. x1=0,x2=2 D. x=2
解一元二次方程: .
一元二次方程x2 -5x= 0的解是( )
A. 0或-5 B. 0或5 C. 0 D. 5
如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )
A. 点M B. 点N C. 点P D. 点Q