题目内容

观察下列等式:
1-
1
2
=
1
1×2

1
2
-
1
3
=
1
2×3

1
3
-
1
4
=
1
3×4

1
4
-
1
5
=
1
4×5


(1)猜想并写出第n个算式:
 

(2)请说明你写出的等式的正确性;
(3)把上述n个算式的两边分别相加,会得到下面的求和公式吗?请写出具体的推导过程.
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 

(4)我们规定:分子是1,分母是正整数的分数叫做单位分数.任意一个真分数都可以表示成不同的单位分数的和的形式,且有无数多种表示方法.根据上面得出的两个结论,请将真分数
2
3
表示成不同的单位分数的和的形式.(写出一种即可)
分析:从数字上很容易的猜得第n个算式,已知题目中各式相加得到(3),第(4)按照第(3)个得到.
解答:解:(1)
1
n
-
1
n+1
=
1
n(n+1)
;(3分)

(2)左边=
1
n
-
1
n+1
=
n+1
n(n+1)
-
n
n(n+1)
=
n+1-n
n(n+1)
=
1
n(n+1)
=右边,
1
n
-
1
n+1
=
1
n(n+1)
.(3分)

(3)
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)

=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1

=1-
1
n+1

(过程给(3分),结论填对得2分)

(4)
2
3
=
1
2
+
1
6
=
1
2
+
1
7
+
1
42
=
1
2
+
1
7
+
1
43
+
1
1806
,等等;(写出一个即可,3分)
点评:本题规律在于从公式到验证,每一步相加即能消去,便得到(3).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网