题目内容
观察下列等式:①1-
| 1 |
| 2 |
| 1 |
| 1×2 |
②
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2×3 |
③
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 3×4 |
④
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 4×5 |
…
(1)猜想并写出第n个算式:
(2)请说明你写出的等式的正确性;
(3)把上述n个算式的两边分别相加,会得到下面的求和公式吗?请写出具体的推导过程.
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
(4)我们规定:分子是1,分母是正整数的分数叫做单位分数.任意一个真分数都可以表示成不同的单位分数的和的形式,且有无数多种表示方法.根据上面得出的两个结论,请将真分数
| 2 |
| 3 |
分析:从数字上很容易的猜得第n个算式,已知题目中各式相加得到(3),第(4)按照第(3)个得到.
解答:解:(1)
-
=
;(3分)
(2)左边=
-
=
-
=
=
=右边,
即
-
=
.(3分)
(3)
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
(过程给(3分),结论填对得2分)
(4)
=
+
=
+
+
=
+
+
+
,等等;(写出一个即可,3分)
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n(n+1) |
(2)左边=
| 1 |
| n |
| 1 |
| n+1 |
| n+1 |
| n(n+1) |
| n |
| n(n+1) |
| n+1-n |
| n(n+1) |
| 1 |
| n(n+1) |
即
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n(n+1) |
(3)
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
(过程给(3分),结论填对得2分)
(4)
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 7 |
| 1 |
| 42 |
| 1 |
| 2 |
| 1 |
| 7 |
| 1 |
| 43 |
| 1 |
| 1806 |
点评:本题规律在于从公式到验证,每一步相加即能消去,便得到(3).
练习册系列答案
相关题目