题目内容

巴蜀中学2017春季运动会的开幕式精彩纷呈,主要分为以下几个类型:A文艺范、B动漫潮、C学院派、D民族风,为了解未能参加运动会的初三学子对开幕式类型的喜好情况,学生处在初三年级随机抽取了一部分学生进行调查,并将他们喜欢的种类绘制成如下统计图,请你根据统计图解答以下问题:

(1)请补全折线统计图,并求出“动漫潮”所在扇形的圆心角度数.

(2)据统计,在被调查的学生中,喜欢“文艺范”类型的仅有2名住读生,其余均为走读生,初二年级欲从喜欢“文艺范”的这几名同学中随机抽取两名同学去观摩“文明礼仪大赛”视频,用列表法或树状图的方法求出所选的两名同学都是走读生的概率.

(1)90°;(2). 【解析】试题分析:(1)根据等级C的人数除以占的百分比求出调查的学生数,进而确定出等级A的人数即可;补全统计图即可; (2)列表得出所有等可能的情况数,找出所选两位同学恰好都是走读生的情况数,即可求出所求的概率. 试题解析:【解析】 (1)被调查的学生数为;20÷50%=40人,A文艺范人数=40×12.5%=5人,B动漫潮人数=40﹣5﹣5﹣20=10...
练习册系列答案
相关题目

对于一个三位正整数t,将各数位上的数字重新排序后(包括本身),得到一个新的三位数 (a≤c),在所有重新排列的三位数中,当|a+c﹣2b|最小时,称此时的 为t的“最优组合”,并规定F(t)=|a﹣b|﹣|b﹣c|,例如:124重新排序后为:142、214、因为|1+4﹣4|=1,|1+2﹣8|=5,|2+4﹣2|=4,所以124为124的“最优组合”,此时F(124)=﹣1.

(1)三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,求证:F(t)=0;

(2)一个正整数,由N个数字组成,若从左向右它的第一位数能被1整除,它的前两位数能被2整除,前三位数能被3整除,…,一直到前N位数能被N整除,我们称这样的数为“善雅数”.例如:123的第一位数1能披1整除,它的前两位数12能被2整除,前三位数123能被3整除,则123是一个“善雅数”.若三位“善雅数”m=200+10x+y(0≤x≤9,0≤y≤9,x、y为整数),m的各位数字之和为一个完全平方数,求出所有符合条件的“善雅数”中F(m)的最大值.

(1)0;(2)0. 【解析】试题分析:(1)由三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,根据“最优组合”的定义即可求解; (2)由三位“善雅数”的定义,可得a为偶数,且2+x+y是3的倍数,且2+x+y<30,又由m的各位数字之和为一个完全平方数,可得2+x+y=32=9,继而求得答案. 试题解析:(1)证明:∵三位正整数t中,有一个数位上的数字是另外两数...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网