搜索
题目内容
附加题:如图,在△ABC中,BC=2,则中位线DE=
.
试题答案
相关练习册答案
分析:
根据三角形的中位线平行于第三边并且等于第三边的一半求解.
解答:
解:在△ABC中,
∵BC=2,
∴中位线DE=
1
2
BC=1.
点评:
本题主要考查三角形的中位线定理,三角形中位线的性质为我们证明两直线平行,两条线段之间的数量关系又提供了一个重要的依据.
练习册系列答案
创新金卷毕业升学系列答案
创新课时训练系列答案
创新学案课时学练测系列答案
创新学习三级训练系列答案
创新与探究系列答案
达标测试卷系列答案
达标训练系列答案
打好基础课堂10分钟系列答案
大联考单元期末测试卷系列答案
大赢家考前巧复习系列答案
相关题目
附加题:如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连接DP,过点A作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是( )
A、
B、
C、
D、
27、附加题:
如图,在五边形A
1
A
2
A
3
A
4
A
5
中,B
1
是A
1
对边A
3
A
4
的中点,连接A
1
B
1
,我们称A
1
B
1
是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.
附加题:
如图,在直角坐标系中,点O
1
在x轴上,⊙O
1
与x轴交于点A(
2
-1,0
),B(
2
+1,0
).直线y=x+1与坐标轴交于C、D两点,直线在⊙O
1
的左侧.
(1)求△DOC的面积;
(2)当直线向右平移,第一次与⊙O
1
相切时,求直线的解析式.
(附加题)如图,在一块三角形区域土地ABC中,∠C=90°,AC=8,BC=6,底边AB上的高h=
24
5
,现在要在△ABC内建造一个面积为12的矩形水池DEFG,如图的设计方案是使DE在AB边上,点G在AC边上,点F在BC边上.
(1)求此方案中水池宽DG;
(2)实际施工时(修建前),发现在AB边上距B点l.85的M处有一棵古老的大树,而这棵大树却又在矩形水池边DE上.为了保护这棵古树,请你另外设计一种方案,使三角形区域中也能修建一个面积为12的矩形水池,并且还能避开大树.(若总分超过100分,则此题超出分数不计入总分)
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案