题目内容
如图甲,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动(如图乙),直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为ycm2.求y与x之间的函数关系式.
![]()
解:在Rt△PMN中,∵PM=PN,∠P=90°,
∴∠PMN=∠PNM=45°.延长AD分别交PM、PN于点G、H,过G作GF⊥MN于F,过H作HT⊥MN于T.
∵DC=2cm,∴MF=GF=2cm,TN=HT=2cm.
∵MN=8cm,
∴MT=6cm,因此,矩形ABCD以每秒1cm的速度由开始向右移动到停止,和
Rt△PMN重叠部分的形状,可分为下列三种情况:
(1)当C点由M点运动到F点的过程中(0≤x≤2),如图①所示,设CD与PM交于点E,则重叠部分图形是Rt△MCE,且MC=EC=x,
,即![]()
![]()
图①
(2)当C点由F点运动到T点的过程中(2<x≤6),如图②所示,重叠部分图形是直角梯形MCDG.
![]()
图②
∵MC=x,MF=2,
∴FC=DG=x-2,且DC=2,
![]()
(3)当C点
由T点运动到N点的
过程中(6<x≤8),如图③所示,设CD与PN交于点Q,则重叠部分图形是五边形MCQHG.
![]()
图③
∵MC=x,∴CN=CQ=8-x,且DC=2,
![]()
练习册系列答案
相关题目