题目内容
计算:﹣1﹣2+|﹣|+(π﹣3.14)0﹣tan60°+.
如图,点A(-2,n),B(1,-2)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)若C是x轴上一动点,设t=CB-CA,求t的最大值,并求出此时点C的坐标.
已知:如图,△ABC内接于⊙O,AB为直径,点D是弧AC的中点,连结BD交AC于点E,过D点作⊙O的切线交BC的延长线于F.
(1)求证:∠FDB = ∠AED.
(2)若⊙O 的半径为5,tan∠FBD=,求CF的长.
一次函数y=2x+6图象与y轴的交点坐标是( )
A. (-3,0) B. (3,0) C. (0,-6) D. (0,6)
在正方形网格中以点A为圆心,AB为半径作圆A交网格于点C(如图(1)),过点C作圆的切线交网格于点D,以点A为圆心,AD为半径作圆交网格于点E(如图(2)).
问题:
(1)求∠ABC的度数;
(2)求证:△AEB≌△ADC;
(3)△AEB可以看作是由△ADC经过怎样的变换得到的?并判断△AED的形状(不用说明理由).
(4)如图(3),已知直线a,b,c,且a∥b,b∥c,在图中用直尺、三角板、圆规画等边三角形A′B′C′使三个顶点A′,B′,C′,分别在直线a,b,c上.要求写出简要的画图过程,不需要说明理由.
在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=__________°.
下列运算正确的是 ( )
A. 4a+3b=7ab B. 4xy-3xy=xy C. -2x+5x=7x D. 2y-y=1
我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是_____元.
已知关于x的一元二次方程的两个实数根为x1、x2且x1+2x2=9,求m的值.