题目内容

【提出问题】

(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.

【类比探究】

(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.

【拓展延伸】

(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.

 

【答案】

见解析

【解析】解:(1)证明:∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°。

∴∠BAM=∠CAN。

∵在△BAM和△CAN中,

∴△BAM≌△CAN(SAS)。∴∠ABC=∠ACN。

(2)结论∠ABC=∠ACN仍成立。理由如下:

∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°。

∴∠BAM=∠CAN。

∵在△BAM和△CAN中,

∴△BAM≌△CAN(SAS)。∴∠ABC=∠ACN。

(3)∠ABC=∠ACN。理由如下:

∵BA=BC,MA=MN,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN。

∴△ABC∽△AMN。∴

又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,∴∠BAM=∠CAN.

∴△BAM∽△CAN。∴∠ABC=∠ACN。

(1)利用SAS可证明△BAM≌△CAN,继而得出结论。

(2)也可以通过证明△BAM≌△CAN,得出结论,和(1)的思路完全一样。

(3)首先得出∠BAC=∠MAN,从而判定△ABC∽△AMN,得到,根据∠BAM=∠BAC﹣

∠MAC,∠CAN=∠MAN﹣∠MAC,得到∠BAM=∠CAN,从而判定△BAM∽△CAN,得出结论。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网