题目内容
阅读下列内容:
=1-
,
=
-
,
=
-
,
=
-
…
=
-
,请完成下面的问题:
如果有理数a,b满足|ab-2|+(1-b)2=0
试求:
(1)a=
(2)
+
+
+…+
的值.
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4×5 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n×(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
如果有理数a,b满足|ab-2|+(1-b)2=0
试求:
(1)a=
2
2
,b=1
1
;(2)
| 1 |
| ab |
| 1 |
| (a+1)(b+1) |
| 1 |
| (a+2)(b+2) |
| 1 |
| (a+2007)(b+2007) |
分析:(1)根据非负数的性质得到ab-2=0,1-b=0,即可解得b=1,a=2;
(2)利用
=
-
(n为正整数)进行计算.
(2)利用
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(1)∵|ab-2|+(1-b)2=0
∴ab-2=0,1-b=0,
∴b=1,a=2.
故答案为2,1;
(2)原式=
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
=
.
∴ab-2=0,1-b=0,
∴b=1,a=2.
故答案为2,1;
(2)原式=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2008×2009 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2008 |
| 1 |
| 2009 |
=1-
| 1 |
| 2009 |
=
| 2008 |
| 2009 |
点评:本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.也考查了非负数的性质.
练习册系列答案
相关题目