题目内容
在二次函数y=x2-2x-3中,当0≤x≤3时,y的最大值和最小值分别是 ( )
A. 0,-4 B. 0,-3 C. -3,-4 D. 0,0
有四张不透明的卡片4, , , ,除正面的数不同外,其余都相同,将它们背面朝上洗匀后,从中随机抽取一张卡片记下数字,再在余下的三张卡片中再抽取一张,那么抽取的卡片都是无理数的概率为______.
小球从A点入口往下落,在每个交叉口都有向左向右的可能,且可能性相等.则小球最终从E点落出的概率为( )
A. B. C. D.
将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为( )
A. B. 2 C. 3 D. 2
如图,已知BC∥DE,则下列说法不正确的是( )
A. 两个三角形是位似图形 B. 点A是两个三角形的位似中心
C. AE∶AD是相似比 D. 点B与点E,点C与点D是对应位似点
如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.
(1)求证:△AFE≌△CDF;
(2)若AB=4,BC=8,求图中阴影部分的面积.
如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为( )
A. 28° B. 52° C. 62° D. 72°
已知, ,求当x取何值时, 的值比的值小1?
已知抛物线y=x2+bx+c(b、c是常数)与x轴有两个交点,其中有一点的坐标为A(1,0),点P(m,t)(m≠0)为抛物线上的一个动点.
(1)设y′=m+t,写出y′关于m的函数解析式,并求出该函数图象的对称轴(用含c的代数式表示);
(2)在(1)的条件下,当m≤3时,与其对应的函数y′的最小值为﹣,求抛物线y=x2+bx+c的解析式;
(3)在(2)的条件下,P点关于原点的对称点为P′,且P′落在第一象限内,当P′A2取得最小值时,求m与t的值.