题目内容
(4分)如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为( )
A. B.4 C. D.2
(2分)已知a=,b=,c=,则下列大小关系正确的是( )
A.a>b>c B.c>b>a C.b>a>c D.a>c>b
(4分)如图,正五边形ABCDE内接于⊙O,则∠CAD= ______度.
(12分)下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.
(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;
(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;
(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.
(3分)抛物线绕坐标原点旋转180°所得的抛物线的解析式是 .
(4分)如图所示几何体的主视图是( )
A. B. C. D.
如图,两条公路AB,CD(均视为直线).东西向公路CD段限速,规定最高行驶速度不能越过60千米/时,并在南北向公路离该公路100米的A处没置了一个监测点.已知点C在A的北偏西60°方向上,点D在A的北偏东45°方向上.
(1)经监测,一辆汽车从点C匀速行驶到点D所的时间是15秒,请通过计算,判断该汽车在这段限速路上是否超速?(参考数据:=1.732)
(2)若一辆大货车在限速路上由D处向西行驶,一辆小汽车在南北向公路上由A处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,两车在匀速行驶过程中的最近距离是多少?
如图,直线l是一条河,A、B两地相距5km,A、B两地到l的距离分别为3km、6km,欲在l上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是( )
下列图形分别是等边三角形、直角三角形、等腰梯形和矩形,其中有且只有一条对称轴的对称图形是( )