题目内容

如图,AD⊥BC,∠BAD=∠B,∠C=65°,则∠BAC=________.

70°
分析:由等腰直角△ABD的性质求得∠BAD=45°;然后利用直角△ADC的两个锐角互余的性质求得∠DAC=25°,则易求∠BAC的度数.
解答:如图,∵AD⊥BC,
∴∠ADB=90°,
又∵∠BAD=∠B,
∴∠BAD=∠B=45°.
在直角△ADC中,∠DAC=90°-∠C=90°-65°=25°,
∴∠BAC=∠BAD+∠DAC=45°+25°=70°.
故答案是:70°.
点评:本题考查了直角三角形的性质.解题时利用了“直角三角形的两个锐角互余的性质”,当然,利用三角形内角和定理也可以解答该题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网