题目内容
(1)叙述三角形中位线定理,并运用平行四边形的知识证明;
(2)运用三角形中位线的知识解决如下问题:如图,在四边形ABCD中,AD∥BC,E,F分别是AB,CD的中点,求证EF=.
如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.
(1)求证:PC是⊙O的切线;
(2)若PC=3,PF=1,求AB的长.
图中三视图对应的正三棱柱是( )
A. B. C. D.
抛物线y=x2+2x-1,与x轴的交点个数是( )
A.1个交点 B.2个交点
C.1个或2个交点 D.没有交点
若分式的值为零,则x的值为 .
如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则四边形ABCD的面积为_______.
如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路上处距点米.如果火车行驶时,周围米以内会受到噪音的影响.那么火车在铁路上沿方向以千米/时的速度行驶时,处受噪音影响的时间为( )
A.秒 B.秒 C.秒 D.秒
学校举办一项小制作评比活动.作品上交时限为3月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的作品件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的件数是12.
请你回答:(1)、本次活动共有 件作品参赛;各组作品件数的众数是 件;
(2)、经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?
(3)、小制作评比结束后,组委会决定从4件最优秀的作品A、B、C、D中选出两件进行全校展示,请用树状图或列表法求出刚好展示作品B、D的概率.
在﹣,0,﹣2,,1这五个数中,最小的数为( )
A.0 B.﹣ C.﹣2 D.