题目内容
(2015秋•永嘉县校级期中)可以用来证明命题“若(x+1)( x﹣5 )=0,则x=﹣1”是假命题的反例为( )
A.x=1 B.x=﹣1 C.x=5 D.x=﹣5
(2014•随州)四张扑克牌的牌面如图1所示,将扑克牌洗匀后,如图2背面朝上放置在桌面上,小明和小亮设计了A、B两种游戏方案:
方案A:随机抽一张扑克牌,牌面数字为5时小明获胜;否则小亮获胜.
方案B:随机同时抽取两张扑克牌,两张牌面数字之和为偶数时,小明获胜;否则小亮获胜.
请你帮小亮选择其中一种方案,使他获胜的可能性较大,并说明理由.
(2015秋•海珠区期末)如图两个同心圆,大圆的半径为5,小圆的半径为1,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是( )
A.8≤AB≤10 B.8<AB≤10 C.4≤AB≤5 D.4<AB≤5
(2015•广东模拟)把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为 .
(2006•临沂)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( )
A.60° B.120° C.60°或150° D.60°或120°
如图,已知△ABC中,AD⊥BC于点D,BF=AC,DF=DC.
(1)求证:BE⊥AC;
(2)如果∠C=60°,CD=2,求AB的长.
如图,在Rt△ABC中,BC=3,AC=4,CD⊥AB,则CD的长为 .
如图,ABCD是一张矩形纸片,AD=BC=2,AB=CD=10,在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.
(1)若∠1=70°,求∠MKN的度数;
(2)当折痕MN与对角线AC重合时,试求△MNK的面积;
(3)△MNK的面积能否小于2?若能,求出此时∠1的度数;若不能,试说明理由.
(2015秋•开江县期末)用一个平面截去正方体的一个角,则截面不可能是( )
A.等腰直角三角形
B.等腰三角形
C.锐角三角形
D.等边三角形