题目内容

如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于(  )

 

A.

44°

B.

60°

C.

67°

D.

77°

考点:

翻折变换(折叠问题).

分析:

由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.

解答:

解:△ABC中,∠ACB=90°,∠A=22°,

∴∠B=90°﹣∠A=68°,

由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,

∴∠ADE=∠CED﹣∠A=46°,

∴∠BDC==67°.

故选C.

点评:

此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网