题目内容
如图,AB是半圆的直径,过圆心O作AB的垂线,与弦AC的延长线交于点D,点E在OD上.
(1)求证:CE是半圆的切线;
(2)若CD=10,,求半圆的半径.
已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.
(1)若这个函数是一次函数,求m的值;
(2)若这个函数是二次函数,则m的值应怎样?
如图,在平面直角坐标系中,已知抛物线与轴交于O点、A点,B为抛物线上一点,C为y轴上一点,连接BC,且BC//OA,已知点O(0,0),A(6,0),B(3,m),AB=.
(1)求B点坐标及抛物线的解析式.,
(2)M是CB上一点,过点M作y轴的平行线交抛物线于点E,求DE的最大值;
(3)坐标平面内是否存在一点F,使得以C、B、D、F为顶点的四边形是菱形?若存在,求出符合条件的点F坐标;若不存在,请说明理由.
如图,下列图案均是由长度相同的火柴按一定的规律拼搭而成,围成的每个小正方形面积为1.第一个图案面积为2,第二个图案面积为4,第三个图案面积为7,…依此规律,第8个图案面积为( )
A. 34 B. 35 C. 36 D. 37
计算的正确结果是( )
A. B. C. D.
先化简,再求值: ,其中x=﹣1.
已知甲、乙两个函数图象上的部分点的横坐标x与纵坐标y如表所示.若在实数范围内,甲、乙的函数值都随自变量的增大而减小,且两个图象只有一个交点,则关于这个交点的横坐标a,下列判断正确的是( )
A. a<﹣2 B. ﹣2<a<0 C. 0<a<2 D. 2<a<4
解方程:7(x+3)=2x(x+3)
为缓解城市汽车交通拥堵,减少汽车尾气对大气的污染. 某区政府投放了大量公租自行车供市民使用. 到2016年底,全区已有公租自行车2 500辆,摆放点60个. 预计到2018年底,全区将有公租自行车5 000辆,并且平均每个摆放点的公租自行车数量是2016年底平均每个摆放点的公租自行车数量的1.2倍. 预计到2018年底,全区将有摆放点多少个?