题目内容
如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:
≈1.41,
≈1.73,
≈2.45,结果精确到0.1)
![]()
考点:
解直角三角形的应用-方向角问题.
分析:
过点B作BD⊥CA交CA延长线于点D,根据题意可得∠ACB和∠ABC的度数,然后根据三角形外角定理求出∠DAB的度数,已知AB=12海里,可求出BD、AD的长度,在Rt△CBD中,解直角三角形求出CD的长度,继而可求出A、C之间的距离.
解答:
解:过点B作BD⊥CA交CA延长线于点D,
由题意得,∠ACB=60°﹣30°=30°,
∠ABC=75°﹣60°=15°,
∴∠DAB=∠DBA=45°,
在Rt△ABD中,AB=12,∠DAB=45°,
∴BD=AD=ABcos45°=6
,
在Rt△CBD中,CD=
=6
,
∴AC=6
﹣6
≈6.2(海里).
答:A、C两地之间的距离为6.2海里.
![]()
点评:
本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度,难度一般.
练习册系列答案
相关题目