题目内容

【题目】如图,P1、P2(P2在P1的右侧)是y= (k>0)在第一象限上的两点,点A1的坐标为(2,0).

(1)填空:当点P1的横坐标逐渐增大时,△P1OA1的面积将(减小、不变、增大)
(2)若△P1OA1与△P2A1A2均为等边三角形,
①求反比例函数的解析式;
②求出点P2的坐标,并根据图象直接写在第一象限内,当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值.

【答案】
(1)减小
(2)解:①如图所示,作P1B⊥OA1于点B,

∵A1的坐标为(2,0),

∴OA1=2,

∵△P1OA1是等边三角形,

∴∠P1OA1=60°,

又∵P1B⊥OA1

∴OB=BA1=1,

∴P1B=

∴P1的坐标为(1, ),

代入反比例函数解析式可得k=

∴反比例函数的解析式为y=

②如图所示,过P2作P2C⊥A1A2于点C,

∵△P2A1A2为等边三角形,

∴∠P2A1A2=60°,

设A1C=x,则P2C= x,

∴点P2的坐标为(2+x, x),

代入反比例函数解析式可得(2+x) x=

解得x1= ﹣1,x2=﹣ ﹣1(舍去),

∴OC=2+ ﹣1= +1,P2C= ﹣1)=

∴点P2的坐标为( +1, ),

∴当1<x< +1时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值


【解析】解:(1)当点P1的横坐标逐渐增大时,点P1离x轴的距离变小,而OA1的长度不变,

故△P1OA1的面积将减小,

所以答案是:减小;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网