题目内容

如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E.
(1)求证:PB为⊙O的切线;
(2)若tan∠ABE=,求sin∠E.

【答案】分析:(1)要证PB是⊙O的切线,只要连接OA,再证∠PBO=90°即可;
(2)连接AD,证明△ADE∽△POE,得到=,设OC=t,则BC=2t,AD=2t,由△PBC∽△BOC,可求出sin∠E的值.
解答:(1)证明:连接OA,
∵PA为⊙O的切线,
∴OA⊥PA
∴∠PAO=90°,
∵OA=OB,OP⊥AB于C,
∴BC=CA,PB=PA,
∴△PAO≌△PBO,
∴∠PBO=∠PAO=90°,
∴PB为⊙O的切线;

(2)解:连接AD,
∵BD为直径,∠BAD=90°由(1)知∠BCO=90°
∴AD∥OP,
∴△ADE∽△POE,
=
由AD∥OC得AD=2OC
∵tan∠ABE=
=
设OC=t,则BC=2t,AD=2t,由△PBC∽△BOC,
得PC=2BC=4t,OP=5t,
==
可设EA=2,EP=5,则PA=3,
∵PA=PB∴PB=3,
∴sin∠E==
点评:本题考查了切线的判定以及相似三角形的判定和性质;能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键要证某线是圆的切线,对于切线的判定:已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网