题目内容
【题目】王老师将1个黑球和若干个白球(这些球除颜色外都相同)放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出1个球(有放回),下表是活动进行中的一组统计数据.
摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸出黑球的次数m | 23 | 31 | 60 | 130 | 203 | 251 |
摸到黑球的频率 | 0.23 | 0.207 | 0.30 | 0.26 | 0.254 | 0.251 |
(1)根据上表数据估计从袋中摸出1个球是黑球的概率是_________;
(2)估计袋中白球的个数.
【答案】(1)0.25(2)估计袋中有3个白球
【解析】试题分析:(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;
(2)列用概率公式列出方程求解即可;
试题解析:(1)251÷1000=0.251;
∵大量重复试验事件发生的频率逐渐稳定到0.25附近,
∴估计从袋中摸出一个球是黑球的概率是0.25;
(2)设袋中白球为x个,
=0.25,
x=3.
答:估计袋中有3个白球.
练习册系列答案
相关题目
【题目】一辆小汽车在高速公路上从静止到起动10秒内的速度经测量如下表:
时间(秒) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
速度(米/秒) | 0 | 0.3 | 1.3 | 2.8 | 4.9 | 7.6 | 11.0 | 14.1 | 18.4 | 24.2 | 28.9 |
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)如果用T表示时间,V表示速度,那么随着T的变化,V的变化趋势是什么?
(3)当T每增加1秒,V的变化情况相同吗?在哪1秒钟,V的增加最大?
(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限。