题目内容
如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.
![]()
(1)求此抛物线的解析式;
(2)直接写出点C和点D的坐标;
(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE , 求P点坐标.
(1)y=-x2+2x+3(2)D(1,4)(3)P(2,3) 【解析】试题分析:(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数b、c的值,进而可得到抛物线的对称轴方程; (2)令x=0,可得C点坐标,将函数解析式配方即得抛物线的顶点C的坐标; (3)设P(x,y)(x>0,y>0),根据题意列出方程即可求得y,即得D点坐标. (1)由点A(﹣1,0)和点B(3...
练习册系列答案
相关题目