题目内容
观察下面计算:
情形1:2×
=4,2+
=4; 情形2:3×
=
,3+
=
;情形3:4×
=
,4+
=
;…
(1)根据上述规律,写出情形n;
(2)根据共同特征,写出你的猜想,并证明你的猜想的正确性.
情形1:2×
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 9 |
| 2 |
| 3 |
| 2 |
| 9 |
| 2 |
| 4 |
| 3 |
| 16 |
| 3 |
| 4 |
| 3 |
| 16 |
| 3 |
(1)根据上述规律,写出情形n;
(2)根据共同特征,写出你的猜想,并证明你的猜想的正确性.
分析:(1)根据上述规律得到:(n+1)•
=n+1+
(n≥1,n为正整数);
(2)等式左边利用乘法法则计算,分子利用完全平方公式展开,右边通分并利用同分母分式的加法法则计算,可得出左边等于右边,得证.
| n+1 |
| n |
| n+1 |
| n |
(2)等式左边利用乘法法则计算,分子利用完全平方公式展开,右边通分并利用同分母分式的加法法则计算,可得出左边等于右边,得证.
解答:解:(1)根据上述规律,得到(n+1)•
=n+1+
(n≥1,n为正整数);
(2)等式左边=
=
,右边=
=
,
∴左边=右边,得证.
| n+1 |
| n |
| n+1 |
| n |
(2)等式左边=
| (n+1)2 |
| n |
| n2+2n+1 |
| n |
| n(n+1)+n+1 |
| n |
| n2+2n+1 |
| n |
∴左边=右边,得证.
点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.
练习册系列答案
相关题目