ÌâÄ¿ÄÚÈÝ
ÒÑÖª£º¶þ´Îº¯Êýy=£¨n£1£©x2£«2mx£«1ͼÏóµÄ¶¥µãÔÚxÖáÉÏ£®
£¨1£©Çëд³ömÓënµÄ¹ØÏµÊ½£¬²¢ÅжÏÒÑÖªÖк¯ÊýͼÏóµÄ¿ª¿Ú·½Ïò£»
£¨2£©ÊÇ·ñ´æÔÚÕûÊým£¬nµÄÖµ£¬Ê¹º¯ÊýͼÏóµÄ¶Ô³ÆÖáÓëxÖáµÄ½»µãºá×ø±êΪÕûÊý£¿Èô´æÔÚ£¬ÇëÇó³öm£¬nµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©Èôy¹ØÓÚxµÄº¯Êý¹ØÏµÊ½Îªy=(n£2)x2£m2x£2n£«2
jÇó¸Ãº¯Êý±Ø¹ýµÄ¶¨µã×ø±ê£»
k̽Ë÷Õâ¸öº¯ÊýͼÏóÓë×ø±êÖáÓÐÁ½¸ö½»µãʱnµÄÖµ.
£¨1£©n-1=m2£¬n=m2+1£¬¡¡¡¡¡¡¡¡¡¡¡¡¡2·Ö
ÒòΪn-1¡Ù0 £¬ÇÒm2¡Ý0
ËùÒÔn-1>0£¬Í¼Ïñ¿ª¿ÚÏòÉÏ¡¡¡¡¡¡¡¡¡¡1·Ö
£¨2£©
¡¡¡¡
¡¡¡¡¡¡¡¡1·Ö
Ҫʹ
ΪÕûÊý£¬ÒòΪm£¬nΪÕûÊý£¬ËùÒÔÖ»Òªm=¡À1£¬´Ëʱn=2
ËùÒÔ´æÔÚm=¡À1£¬ n=2£¬·ûºÏÒªÇ󡣡¡¡¡¡¡2·Ö
£¨3£©j y=£¨n£2£©x2£m2x£2n£«2=n(x2£x£2)£2 x2+ x£«2
Áîx2£x£2=0£¬µÃx=-1»ò2£¬ËùÒԱعýµÄ¶¨µãΪ(£1£¬£1)£¬£¨2,£4£©£¬¡¡¡2·Ö
kÈôn=2£¬Ôòy=£x£2£¬Ö±ÏßÓë×ø±êÖáÓÐÁ½¸ö½»µã£» ¡¡¡¡¡¡¡¡¡¡1·Ö
Èôn¡Ù2£¬b2£4ac =9n2£26n£«17
µ±Å×ÎïÏß¹ýÔµãʱ£¬n=1£¬´Ëʱn-1=0,²»·ûºÏÌâÒ⣬ӦÉáÈ¥ ¡¡¡¡¡¡¡1·Ö
µ±Å×ÎïÏß²»¹ýÔµãʱ£¬Áî9n2£26n£«17=0£¬µÃn=
»òn=1£¨ÉáÈ¥£©£¬
¼ìÑéÖª£¬µ±n=2»ò
ʱ£¬·ûºÏÌâÒâ¡