题目内容
计算:= .
a-1
【解析】原式=
如图,△ABO缩小后变为,其中A、B的对应点分别为,均在图中格点上,若线段AB上有一点,则点在上的对应点的坐标为( ).
A、 B、 C、 D、
如图,正方形ABCD中,AB=,延长BC至E,使BE=BD,则△BDE的面积为 。
三角形在正方形方格纸中的位置如图所示,则cosα的值是( )
A. B. C. D.
如图,圆锥的侧面积恰好等于其底面积的2倍,则该圆锥侧面展开图所对应扇形圆心角的度数为( )
二次函数的最小值是 .
如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.
(1)求证:EB=EC;
(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.
如图,边长为1的小正方形构成的网格中,半径为1的的圆心O在格点上,则∠AED的正切值等于_______________.
初中生对待学习的态度一直是教育工作者关注的问题之一.为此无锡市教育局对我市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了 名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数;
(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?