题目内容

(1)如图1所示,两个直角三角形的直角顶点重合,已知∠AOD=120°,求∠BOC的度数;
(2)请您画出图2的三视图;
(3)如图3,点O是MN上的一点,OA、OB、OC分别是从点O出发的三条射线,∠AOC是直角,OB平分∠MOC,若∠AOB=33°,求∠MOC的度数.
分析:(1)根据题意,将∠AOD分解为∠AOC+∠BOC+∠BOD,根据角的和差关系易得答案;
(2)主视图是从正面看所得到的图形,从左往右分别有2,1,1个小正方形;左视图是从左面看所得到的图形,从左往右分别有2,1,1个小正方形;俯视图是从上面看所得到的图形,从左往右分别有2,1个小正方形;
(3)先根据余角的定义求出∠BOC的度数,再根据角平分线的定义求出∠MOC的度数.
解答:(1)解:∵∠AOD=120°,∠COD=90°,
∴∠AOC=∠AOD-∠COD=30°,
∴∠BOC=90°-30°=60°;

(2)解:作图如下:


(3)解:∵∠AOC=90°,∠AOB=33°,
∴∠BOC=90°-33°=57°,
∵OB平分∠MOC,
∴∠MOC=2∠BOC=114°.
点评:(1)考查角的计算,注意结合图形,发现角与角之间的关系,利用公共角.
(2)主要考查了画三视图,关键是掌握三视图所看的位置.
(3)综合考查了余角的定义和角平分线的定义,角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网