题目内容
(1)如图4318(1),▱ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.
(2)如图4318(2),将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.
![]()
![]()
图4318
证明:(1)∵四边形ABCD是平行四边形,
∴AD∥BC,OA=OC.∴∠1=∠2.
又∵∠3=∠4,
∴△AOE≌△COF(ASA).∴AE=CF.
(2)∵四边形ABCD是平行四边形,
∴∠A=∠C,∠B=∠D.
由(1),得AE=CF.
由折叠的性质,得AE=A1E,∠A1=∠A,∠B1=∠B,
∴A1E=CF,∠A1=∠C,∠B1=∠D.
又∵∠1=∠2,∴∠3=∠4.
∵∠5=∠3,∠4=∠6,∴∠5=∠6.
在△A1IE与△CGF中,
![]()
∴△A1IE≌△CGF(AAS).∴EI=FG.
练习册系列答案
相关题目