题目内容
如图,若棋盘中表示“帥”的点可以用(0,1)表示,表示“卒“的点可以用(2,2)表示,则表示“馬”的点用坐标表示为__.
分解因式a2b-b3结果正确的是
A. b(a+b)(a-b) B. b(a-b)2
C. b(a2-b2) D. b(a+b)2
先化简,再求值:(+)÷,其中x=﹣1.
已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点,点P在直线AB上运动(不与A、B两点重合).
(1)如图1,当点P在线段AB上运动时,总有:∠CPD=∠PCA+∠PDB,请说明理由;
(2)如图2,当点P在线段AB的延长线上运动时,∠CPD、∠PCA、∠PDB之间有怎样的数量关系,并说明理由;
(3)如图3,当点P在线段BA的延长线上运动时,∠CPD、∠PCA、∠PDB之间又有怎样的数量关系(只需直接给出结论)?
解不等式组:并把解集在数轴上表示出来.
为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )
A. 280 B. 240 C. 300 D. 260
请阅读下列材料:
我们可以通过以下方法求代数式x2+6x+5的最小值.
x2+6x+5=x2+2•x•3+32﹣32+5=(x+3)2﹣4,
∵(x+3)2≥0
∴当x=﹣3时,x2+6x+5有最小值﹣4.
请根据上述方法,解答下列问题:
(Ⅰ)x2+4x﹣1=x2+2•x•2+22﹣22﹣1=(x+a)2+b,则ab的值是_____;
(Ⅱ)求证:无论x取何值,代数式x2+2x+7的值都是正数;
(Ⅲ)若代数式2x2+kx+7的最小值为2,求k的值.
用配方法解方程x2﹣x﹣1=0时,应将其变形为( )
A. (x﹣)2= B. (x+)2=
C. (x﹣)2=0 D. (x﹣)2=
△ABC在正方形网格中的位置如图所示,则cosB的值为( )
A. B. C. D. 2