题目内容
【题目】如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=
(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=
,且点B的坐标为(n,-2).
(1)求一次函数与反比例函数的解析式;
(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.
![]()
【答案】(1)
;(2)当点E(0,8)或(0,5)或(0,-5)或(0,
)时,△AOE是等腰三角形.
【解析】
(1)由垂直的定义及锐角三角函数定义求出AO的长,利用勾股定理求出OD的长,确定出A坐标,进而求出m的值确定出反比例解析式,把B的坐标代入反比例解析式求出n的值,确定出B坐标,利用待定系数法求出一次函数解析式即可;
(2)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.
(1)
一次函数
与反比例函数
图象交于
与
,且
轴,
,
在
中,
,
,
,即
,
根据勾股定理得:
,
,
代入反比例解析式得:
,即
,
把
坐标代入得:
,即
,
代入一次函数解析式得:
,
解得:
,即
;
(2)当
,即
,
;
当
时,得到
,即
;
当
时,由
,
,得到直线
解析式为
,中点坐标为
,
垂直平分线方程为
,
令
,得到
,即
,
综上,当点
或
或
或
时,
是等腰三角形.
【题目】下表显示的是某种大豆在相同条件下的发芽试验结果:
每批粒数n | 100 | 300 | 400 | 600 | 1000 | 2000 | 3000 |
发芽的粒数m | 96 | 282 | 382 | 570 | 948 | 1904 | 2850 |
发芽的频率 | 0.960 | 0.940 | 0.955 | 0.950 | 0.948 | 0.952 | 0.950 |
下面有三个推断:
①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955;
②随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95;
③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800粒.
其中推断合理的是( )
A. ①②③ B. ①② C. ①③ D. ②③