题目内容
如图,以△ABC的BC边为直径作圆O,分别交AC、AB于E、F两点,过A作圆O的切线,切点为D,并且点E、F为劣弧
的三等分点,求∠CAD的大小.
∵E为弧CF的中点,
∴∠ABE=∠CBE,
又∵BE⊥CE,
∴△ABC为等腰三角形,
即AB=BC=2r,AE=EC=l,
∵E,F为弧CD的三等分点,
∴DF=EC=L,
∵AD,AC分别为⊙O的切线和割线,
∴AD2=AE•AC,即AD=
又∵△ADF∽△ABD,
∴
即BD=
∵BD2=DO2+OB2,
∴∠DBO=45°,
∵∠DBF=∠FBE=∠EBC,
AB=BC,
∴∠ABC=∠DAB=30°,
∠BAC=75°,
∴∠CAD=105°.
分析:根据已知得出△ABC为等腰三角形,进而利用切割线定理求出AD=
点评:此题主要考查了切线的性质以及全等三角形的性质和圆周角定理,熟练利用切割线定理得出AD=
练习册系列答案
相关题目