题目内容
如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD,其中能使AD∥BC的条件是( )
A. ①② B. ③④ C. ②④ D. ①③④
某水电站兴建了一个最大蓄水容量为12万米3的蓄水池,并配有2个流量相同的进水口和1个出水口.某天从0时至12时,进行机组试运行.其中,0时至2时打开2个进水口进水;2时,关闭1个进水口减缓进水速度,至蓄水池中水量达到最大蓄水容量后,随即关闭另一个进水口,并打开出水口,直至12时蓄水池中的水放完为止.
若这3个水口的水流都是匀速的,且2个进水口的水流速度一样,水池中的蓄水量 y(万米3)与时间t(时)之间的关系如图所示,请根据图象解决下列问题:
(1)蓄水池中原有蓄水 万米3,蓄水池达最大蓄水量12万米3的时间a的值为 ;
(2)求线段BC、CD所表示的y与t之间的函数关系式;
(3)蓄水池中蓄水量维持在m万米3以上(含m万米3)的时间有3小时,求m的值.
股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为,则满足的方程是( )
A. B. C. D.
如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为 .
已知点P(0,m)在y轴的负半轴上,则点M(-m,-m+1)在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
在平面直角坐标系中,抛物线的对称轴是直线.
(1)求抛物线的表达式;
(2)点, 在抛物线上,若,请直接写出的取值范围;
(3)设点为抛物线上的一个动点,当时,点关于轴的对称点都在直线的上方,求的取值范围.
如图,在Rt△ABC中,∠C=90°,点D在AC边上.若DB=6,AD=CD,sin∠CBD=,求AD的长和tanA的值.
函数的图象顶点坐标是( )
A. (0,3) B. (-1,3) C. (0,-3) D. (-1,-3)
用配方法解一元二次方程x2-4x+3=0时可配方得( )
A. (x-2)2=7 B. (x-2)2=1 C. (x+2)2=1 D. (x+2)2=2