题目内容

如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).
(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;
(2)画出△ABC绕原点O旋转180°后得到的图形△A2B2C2,并写出B2点的坐标;
(3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.
考点:作图-轴对称变换,轴对称-最短路线问题,作图-旋转变换
专题:
分析:(1)根据网格结构找出点A、B、C关于y轴的对称的点A1、B1、C1的位置,然后顺次连接即可;
(2)根据网格结构找出点A、B、C绕原点O旋转180°后的点A2、B2、C2的位置,然后顺次连接即可;
(3)找出点A关于x轴的对称点A′,连接A′B与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可.
解答:解:(1)△A1B1C1如图所示,
B1(-4,2);

(2)△A2B2C2如图所示,
B2(-4,-2);

(3)△PAB如图所示,
P(2,0).
点评:本题考查了根据轴对称变换、平移变换作图以及轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网