题目内容
已知:如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且OA=AB=AD.
(1)求证:BD是⊙O的切线;
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且BE=8,tan∠BFA=
,求⊙O的半径长.
连接OB,
∵OA=AB=OB,
∴△OAB是等边三角形,
∴∠OAB=∠OBA=60°,
∵AD=AB,
∴∠ABD=∠D=
∴∠DBO=∠ABD+∠OBA=30°+60°=90°.
即OB⊥BD,
∴DB是⊙O的切线.
(2)∵AC是直径,点B在⊙O上,
∴∠ABC=90°,
∴△ABF为直角三角形,
在直角△ABF中,由tan∠BFA=
∴cos∠BFA=
∵∠C=∠E,∠AFC=∠BFE,
∴△AFC∽△BFE,
∴
∵BE=8,
∴AC=12.
因此圆的半径为6.
分析:(1)连接OB,得到△OAB是等边三角形,∠OBA=∠OAB=60°,再由AD=AB得到∠ABD=30°,所以∠DBO=90°,证明BD是⊙O的切线.
(2)在直角△ABF中,求出cos∠BFA的值,然后由△ACF∽△BEF,得到
点评:本题考查的是切线的判定,(1)根据题目的条件求出∠DBO的度数,证明DB是圆的切线.(2)利用三角函数求出
练习册系列答案
相关题目