题目内容
已知∠ABC=30°,BD是∠ABC的平分线,则∠ABD=________.
15 解析:∵∠ABC=30°,BD是∠ABC的平分线,∴∠ABD=∠ABC=×30°=15°.故答案为:15.
实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.
(1)请你依照图1,用两段相等的圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形;
(2)以你在图3 中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.
如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且CE=CD.
求证:∠B=∠E.
如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为( )
A.30° B.45° C.60° D.90°
下列四个角中,最有可能与70°角互补的角是( )
下列计算正确的是( )
A.(-p2q)3=-p5q3 B.(12a2b3c)÷(6ab2)=2ab
C.3m2÷(3m-1)=m-3m2 D.(x2-4x)x-1=x-4
已知P=3xy-8x+1,Q=x-2xy-2,当x≠0时,3P-2Q=7恒成立,则y的值为______.
已知y=x-1,则(x-y)2+(y-x)+1的值为________.
如图,在平面直角坐标系xoy中,抛物线与x轴,y轴的交点分别为点A,点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)
(1)求A,B,C三点的坐标和抛物线的顶点的坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当0<t<时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.