题目内容
如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(-1,3)…,根据这个规律探索可得,第90个点的坐标是什么?
![]()
详解:观察可知,(0,1),共1个,
(0,2),(1,2),共2个,
(1,3),(0,3),(-1,3),共3个,
…,
依此类推,纵坐标是n的共有n个坐标,1+2+3+…+n=
,
当n=13时,
=91,
∴第90个点的纵
坐标为13,(13-1)÷2=6,
∴第91个点的坐标为(-6,13),第90个点的坐标为(-5,13).
“洛书”简介:
“洛书”是世界上最古老的一个三阶幻方,它有3行3列,三横行的三个数之和,三竖列的三个数之和,两对角线的三个数之和都等于15.其实幻方就是把一些有规律的数填在纵横格数都相等的正方形图内,使每一行、每一列和每一条对角线上各个数之和都相等.
| 4 | 9 | 2 |
| 3 | 5 | 7 |
| 8 | 1 | 6 |
|
洛书
问题发现:
“洛书”中还有一些规律是可以总结的,如:
(1)在“洛书”中放在最中间的数5称为核心数,这个数的确定不是随便填上去的,是有一定方法可寻的,那么请你在图①中写出一条寻找核心数的方法.
(2
)如果把图①中每一列三个数(从上到下)看做一个三位数,则这三个三位数之和等于它们的逆转数(从下到上)之和.
验证:每一列三个数(从上到下)组成的三位数之和即:438+951+276=1665,它们的逆转数(从下到上)三个三位数之和:834+159+672=1665.
依据上面的发现,你能提出什么样的问题?并验证你所提出的问题.
提出问题:
验证:
问题拓展:
怎样的九个数能构造成三阶幻方呢?
|
(2)请你写一个能构成三阶幻方的九个数(区别于上述所举的数):
(3)请你总结一个一般性的结论: