题目内容
某公司有A、B两种客车,它们的载客量和租金如下表,星星中学根据实际情况,计划用A、B型车共5辆,同时送七年级师生到校基地参加社会实践活动.
A
B
载客量(人/辆)
40
20
租金(元/辆)
200
150
(1)若要保证租金费用不超过980元,请问该学校有哪几种租车方案?
(2)在(1)的条件下,若七年级师生共有150人,问哪种租车方案最省钱?
已知(a+b-1)(a+b+1)=8,求a+b的值.
与分式-的值相等的是( )
A. - B. - C. D.
如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是 _________°.
在△ABC中,∠A,∠B都是锐角,tanA=1,sinB=,你认为△ABC最确切的判断是( )
A. 等腰三角形 B. 等腰直角三角形 C. 直角三角形 D. 锐角三角形
某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题加10分,答错(或不答)一题扣5分,小明参加本次竞赛得分要不低于140分.设他答对x道题,则根据题意,可列出关于x的不等式为________.
若不等式组的解集是﹣3<x<2,则a+b=________
某商店用1050元购进第一批某种文具盒,很快卖完.又用1440元购进第二批该种文具盒,但第二批每只文具盒的进价是第一批进价的1.2倍,数量比第一批多了10只.求第一批每只文具盒的进价是多少元?
(2013年浙江义乌12分)如图1,已知(x>)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q,连结AQ,取AQ的中点为C.
(1)如图2,连结BP,求△PAB的面积;
(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为,求此时P点的坐标;
(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.