题目内容
如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连结OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
【小题1】求线段OA所在直线的函数解析式
【小题2】设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
【小题3】当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等,若存在,请求出点Q的坐标;若不存在,请说明理由.
【小题1】设
所在直线的函数解析式为
,
∵
(2,4),
∴
,
,
∴
所在直线的函数解析式为
.------------------2分
【小题2】①∵顶点M的横坐标为
,且在线段
上移动,
∴
(0≤
≤2).
∴顶点
的坐标为(
,
).
∴抛物线函数解析式为
.
∴当
时,![]()
(0≤
≤2).
∴点
的坐标是(2,
) -------------------------------4分
② ∵
=
=
,又∵0≤
≤2,
∴当
时,PB最短. -------------------------------6分
【小题3】当线段
最短时,此时抛物线的解析式为
.
假设在抛物线上存在点
,使
.
设点
的坐标为(
,
).
①当点
落在直线
的下方时,过
作直线
//
,交
轴于点
,
∵
,
,
∴
,∴
,∴
点的坐标是(0,
). -------------------------------7分
∵点
的坐标是(2,3),∴直线
的函数解析式为
.
∵
,∴点
落在直线
上.∴
=
.
解得
,即点
(2,3).∴点
与点
重合. -------------------------------8分
∴此时抛物线上不存在点
,使△
与△
的面积相等.
②当点
落在直线
的上方时,
作点
关于点
的对称称点
,过
作直线
//
,交
轴于点
,
∵
,∴
,∴解析