题目内容

如图,在△ABC中,AB=AC,∠A=36°,两条角平分线BE、CD相交于点O,则图中全等等腰三角形有

A.1对 B.2对 C.3对 D.4对

C

【解析】

试题分析:因为AB=AC,∠A=36°,所以∠ABC=∠ACB=72°,而BE、CD是角平分线,所以∠ABE=∠EBC=∠ACD=∠DCB=36°,所以可得△ABE≌△ACD,所以BD=CE,进而可得△BDO≌△CEO,△BDC≌△CEB,由此共三对全等等腰三角形.

考点:三角形全等的判定.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网