题目内容

如图,AD、AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B,若OB=2,则BC的长等于(  )
分析:首先连接CD,由圆周角定理可得,∠C=90°,又由∠CAD=30°,OB⊥AD,OB=2,即可求得OA,AB的长,然后在Rt△ACD中,由三角函数的性质,即可求得答案.
解答:解:连接CD,
∵AD是⊙O的直径,
∴∠C=90°,
∵OB⊥AD,
∴∠AOB=∠C=90°,
在Rt△AOB中,∠CAD=30°,OB=2,
∴AB=2OB=4,OA=
OB
tan30°
=2
3

∴AD=2OA=4
3

在Rt△ABC中,AC=AD•cos30°=4
3
×
3
2
=6,
∴BC=AC-AB=6-4=2.
故选A.
点评:此题考查了圆周角定理、含30°直角三角形的性质以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网