ÌâÄ¿ÄÚÈÝ
̽Ë÷Ñо¿
£¨1£©ÏÈ̽¾¿º¯Êýy=x4-2x2-1µÄͼÏóÓëÐÔÖÊ£®
¢ÙÌîдÏÂ±í£¬»³ö¸Ãº¯ÊýµÄͼÏó£º
| x | ¡ | -2 | -
|
-1 | -
|
0 |
|
1 |
|
2 | ¡ | ||||||||
| y | ¡ | ¡ |
¢ÛÔÚÇó¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©µÄ×î´ó£¨Ð¡£©ÖµÊ±£¬³ýÁËͨ¹ý¹Û²ìͼÏ󣬻¹¿ÉÒÔͨ¹ýÅä·½µÃµ½£®ÇëÄãͨ¹ýÅä·½Çóº¯Êýy=x4-2x2-1 µÄ×î´ó»ò×îСֵ£®
½â¾öÎÊÌâ
£¨2£©ÉèÆ½ÐÐÓÚxÖáµÄÖ±ÏßÓëyÖáµÄ½»µã×ø±êΪ£¨0£¬k£©£¬ÊÔÌÖÂÛº¯Êýy=x4-2x2-1µÄͼÏóÓë¸ÃƽÐÐÓÚxÖáµÄÖ±Ïß¹«¹²µãµÄ¸öÊý£®£¨Ö±½Óд³ö´ð°¸£©
·ÖÎö£ºÌ½Ë÷Ñо¿£º
£¨1£©¢ÙÀûÓôúÈë·¨£¬¼´¿ÉÇó³öxÓëyµÄ¶ÔÓ¦Öµ£¬»³öͼÏó¼´¿É£»
¢ÚÀûÓöþ´Îº¯ÊýµÄÐÔÖʼ´¿É½â´ð£»
¢ÛÀûÓÃÅä·½·¨Çó³öº¯Êý×îÖµ¼´¿É£»
½â¾öÎÊÌ⣺
£¨2£©·Öµ±k=-2»òk£¾-1ʱ£¬µ±k=-1ʱ£¬µ±-2£¼k£¼-1ʱ£®ÈýÖÖÇé¿öÌÖÂۿɵú¯Êýy=x4-2x2-1µÄͼÏóÓë¸ÃƽÐÐÓÚxÖáµÄÖ±Ïß¹«¹²µãµÄ¸öÊý£®
£¨1£©¢ÙÀûÓôúÈë·¨£¬¼´¿ÉÇó³öxÓëyµÄ¶ÔÓ¦Öµ£¬»³öͼÏó¼´¿É£»
¢ÚÀûÓöþ´Îº¯ÊýµÄÐÔÖʼ´¿É½â´ð£»
¢ÛÀûÓÃÅä·½·¨Çó³öº¯Êý×îÖµ¼´¿É£»
½â¾öÎÊÌ⣺
£¨2£©·Öµ±k=-2»òk£¾-1ʱ£¬µ±k=-1ʱ£¬µ±-2£¼k£¼-1ʱ£®ÈýÖÖÇé¿öÌÖÂۿɵú¯Êýy=x4-2x2-1µÄͼÏóÓë¸ÃƽÐÐÓÚxÖáµÄÖ±Ïß¹«¹²µãµÄ¸öÊý£®
½â´ð£º½â£º£¨1£©¢ÙÌî±íÈçÏ£º
»Í¼ÈçÏ£º

¢Úº¯ÊýͼÏó¹ØÓÚyÖá¶Ô³Æ£»
º¯ÊýͼÏóÓÐÁ½¸ö×îµÍµã£»
µ±-1¡Üx¡Ü0»òx¡Ý1ʱ£¬yËæxµÄÔö´ó¶øÔö´ó£»
µ±0¡Üx¡Ü1»òx¡Ü-1ʱ£¬yËæxµÄÔö´ó¶ø¼õС£»
º¯ÊýͼÏóÓëxÖáÓÐÁ½¸ö¹«¹²µã£®
¢Ûy=£¨x2-1£©2-2£¬
µ±x2-1=0ʱ£¬¼´x=¡À1ʱ£¬º¯ÊýyÓÐ×îСֵ-2£®
£¨2£©µ±k=-2»òk£¾-1ʱ£¬Æ½ÐÐÓÚxÖáµÄÖ±ÏßÓë º¯Êýy=x4-2x2-1µÄͼÏóÓÐ2¸ö¹«¹²µã£»
µ±k=-1ʱ£¬Æ½ÐÐÓÚxÖáµÄÖ±ÏßÓ뺯Êýy=x4-2x2-1µÄͼÏóÓÐ3¸ö¹«¹²µã£»
µ±-2£¼k£¼-1ʱ£¬Æ½ÐÐÓÚxÖáµÄÖ±ÏßÓ뺯Êýy=x4-2x2-1µÄͼÏóÓÐ4¸ö¹«¹²µã£®
| x | ¡ | -2 | -
|
-1 | -
|
0 |
|
1 |
|
2 | ¡ | ||||||||
| y | ¡ | 7 | -
|
-2 | -
|
-1 | -
|
-2 | -
|
7 | ¡ |
¢Úº¯ÊýͼÏó¹ØÓÚyÖá¶Ô³Æ£»
º¯ÊýͼÏóÓÐÁ½¸ö×îµÍµã£»
µ±-1¡Üx¡Ü0»òx¡Ý1ʱ£¬yËæxµÄÔö´ó¶øÔö´ó£»
µ±0¡Üx¡Ü1»òx¡Ü-1ʱ£¬yËæxµÄÔö´ó¶ø¼õС£»
º¯ÊýͼÏóÓëxÖáÓÐÁ½¸ö¹«¹²µã£®
¢Ûy=£¨x2-1£©2-2£¬
µ±x2-1=0ʱ£¬¼´x=¡À1ʱ£¬º¯ÊýyÓÐ×îСֵ-2£®
£¨2£©µ±k=-2»òk£¾-1ʱ£¬Æ½ÐÐÓÚxÖáµÄÖ±ÏßÓë º¯Êýy=x4-2x2-1µÄͼÏóÓÐ2¸ö¹«¹²µã£»
µ±k=-1ʱ£¬Æ½ÐÐÓÚxÖáµÄÖ±ÏßÓ뺯Êýy=x4-2x2-1µÄͼÏóÓÐ3¸ö¹«¹²µã£»
µ±-2£¼k£¼-1ʱ£¬Æ½ÐÐÓÚxÖáµÄÖ±ÏßÓ뺯Êýy=x4-2x2-1µÄͼÏóÓÐ4¸ö¹«¹²µã£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯Êý×ÛºÏÌâ£¬Éæ¼°µÄ֪ʶµãÓк¯ÊýͼÏóµÄ»·¨ºÍº¯ÊýµÄÐÔÖÊÒÔ¼°º¯Êý×îÖµÎÊÌ⣬ÀûÓÃÊýÐνáºÏµÃ³öÊǽâÌâ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿