题目内容
已知:如图所示, AC、BD相交于点O,连接AB,CD,且∠ABD=∠ACD.
求证:△AOB∽△DOC
若, ,且,则的值为__________.
已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)
(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.
①求证:PG=PF; ②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.
(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.
如图,平行四边形ABCD内接于⊙O,则∠ADC=( )
A. 45° B. 50° C. 60° D. 75°
如图,在中, .点从点出发沿方向以每秒2个单位长的速度向点匀速运动,同时点从点出发沿方向以每秒1个单位长的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点、运动的时间是t秒(t>0).过点作于点,连接、.
(1)求证: ;
(2)四边形能够成为菱形吗?如果能,求出相应的值;
如果不能,说明理由.
(3)当为何值时, 为直角三角形?直接写出t值.
如图,在△ABC中,DE∥BC,且AD=2,DB=3,则=______.
已知△ABC的三边长分别为6 cm,7.5 cm,9 cm,△DEF的一边长为4 cm,若想得到这两个三角形相似,则△DEF的另两边长是下列的( )
A. 2 cm,3 cm B. 4 cm,5 cm C. 5 cm,6 cm D. 6 cm,7 cm
股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是 .
数轴上表示的点与表示的点之间的距离为( ).
A. B. C. D.