题目内容

精英家教网如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心,
1
2
AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连接AE、AD、DC.
(1)求证:D是
AE
的中点;
(2)求证:∠DAO=∠B+∠BAD;
(3)若
S△CEF
S△OCD
=
1
2
,且AC=4,求CF的长.
分析:(1)由AC是⊙O的直径,即可求得OD∥BC,又由AE⊥OD,即可证得D是
AE
的中点;
(2)首先延长OD交AB于G,则OG∥BC,可得OA=OD,根据等腰三角形的性质,即可求得∠DAO=∠B+∠BAD;
(3)由AO=OC,S△OCD=
1
2
S△ACD,即可得
S△CEF
S△ACD
=
1
4
,又由△ACD∽△FCE,根据相似三角形的面积比等于相似比的平方,即可求得CF的长.
解答:精英家教网(1)证明:∵AC是⊙O的直径,
∴∠AEC=90°,
∴AE⊥BC,
∵OD∥BC,
∴AE⊥OD,
∴D是
AE
的中点;

(2)证明:
方法一:
如图,延长OD交AB于G,则OG∥BC,
∴∠AGD=∠B,
∵∠ADO=∠BAD+∠AGD,
又∵OA=OD,
∴∠DAO=∠ADO,
∴∠DAO=∠B+∠BAD;

方法二:
如图,延长AD交BC于H,
则∠ADO=∠AHC,
∵∠AHC=∠B+∠BAD,
∴∠ADO=∠B+∠BAD,
又∵OA=OD,
∴∠DAO=∠B+∠BAD;

(3)解:∵AO=OC,
∴S△OCD=
1
2
S△ACD
S△CEF
S△OCD
=
1
2

S△CEF
S△ACD
=
1
4

∵∠ACD=∠FCE,∠ADC=∠FEC=90°,
∴△ACD∽△FCE,
S△CEF
S△ACD
=(
CF
AC
)2

即:
1
4
=(
CF
4
)2

∴CF=2.
点评:此题考查了垂径定理,平行线的性质以及相似三角形的判定与性质等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网