题目内容
(1)计算:| 1 |
| 4 |
| 12 |
| 3 |
(2)先化简,再求值:[(xy+2)(xy-2)-2x2y2+13]÷(xy-3),其中:x=10,y=-
| 1 |
| 5 |
分析:(1)先将二次根式化简为最简二次根式、特殊角的三角函数值、取绝对值,然后根据实数运算法则进行计算;
(2)利用平方差公式化简代数式,然后将x=10,y=-
代入求值.
(2)利用平方差公式化简代数式,然后将x=10,y=-
| 1 |
| 5 |
解答:解:(1)原式=
+
-
=-
(2)[(xy+2)(xy-2)-2x2y2+13]÷(xy-3)
=(x2y2-4-2x2y2+13)÷(xy-3)
=((9-x2y2)÷(xy-3)
=(3-xy)(3+xy)÷(xy-3)
=-(xy+3)
当x=10,y=-
时,
原式=-[10×(-
)+3]
=-1.
| ||
| 2 |
| ||
| 3 |
| 3 |
=-
| 1 |
| 6 |
| 3 |
(2)[(xy+2)(xy-2)-2x2y2+13]÷(xy-3)
=(x2y2-4-2x2y2+13)÷(xy-3)
=((9-x2y2)÷(xy-3)
=(3-xy)(3+xy)÷(xy-3)
=-(xy+3)
当x=10,y=-
| 1 |
| 5 |
原式=-[10×(-
| 1 |
| 5 |
=-1.
点评:本题综合考查了整式的混合运算--化简求值、实数的运算、特殊角的三角函数值.解题的关键是注意运算顺序.
练习册系列答案
相关题目