题目内容
如图,抛物线y=-x2+(m+2)x-3(m-1)交x轴于A、B,交y轴于C.直线y=(m+1)x-3经过点A.
![]()
(1)求抛物线的解析式;
(2)点Q为线段AB上的动点,过点Q作QE∥AC,交BC于E,连CQ.当S△CQE的面积最大时,求点Q的坐标;
(3)直线y=kx(k<0)交直线y=(m+1)x-3于P,交抛物线y=-x2+(m+2)x-3(m-1)于点M,过M作x轴的垂线,垂足为D,交直线y=(m+1)x-3于N.△PMN能否为等腰三角形?若能,求k的值;若不能,说明理由.
练习册系列答案
相关题目
某工厂根据市场需求,计划生产A、B两种型号挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,所生产两型号挖掘机可全部售出,两型号挖掘机生产成本和售价如下表:
型号 | A | B |
成本(万元/台) | 200 | 240 |
售价(万元/台) | 250 | 300 |
(1)该厂对这两型挖掘机有哪几种生产方案?
(2)该厂如何生产能获得最大利润?
(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产可以获得最大利润?(注:利润=售价-成本)