题目内容
某小区2012年屋顶绿化面积为2000,计划2014年屋顶绿化面积为2880,如果每年屋顶绿化面积增长率相同,那么这个增长率是 .
如图,已知抛物线y1=-x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:
①当x>2时,M=y2;
②当x<0时,x值越大,M值越大;
③使得M大于4的x值不存在;
④若M=2,则x=1.
其中正确的有( )
A.1个 B.2个 C.3个 D.4个
某校300名学生参加植树活动,要求每人植4~7棵,活动结束后随机调查了部分学生每人的植树量,并分为四种类型,A:4棵,B:5棵,C:6棵,D:7棵.将所得数据处理后,绘制成扇形统计图(部分)和条形统计图(部分)如下:
回答下列问题:
(1)补全条形统计图;
(2)计算所随机调查学生每人植树量的平均数;
(3)估计参加植树活动的300名学生共植树多少棵?
如图,抛物线y=-x2+(m+2)x-3(m-1)交x轴于A、B,交y轴于C.直线y=(m+1)x-3经过点A.
(1)求抛物线的解析式;
(2)点Q为线段AB上的动点,过点Q作QE∥AC,交BC于E,连CQ.当S△CQE的面积最大时,求点Q的坐标;
(3)直线y=kx(k<0)交直线y=(m+1)x-3于P,交抛物线y=-x2+(m+2)x-3(m-1)于点M,过M作x轴的垂线,垂足为D,交直线y=(m+1)x-3于N.△PMN能否为等腰三角形?若能,求k的值;若不能,说明理由.
如图,∠ABC=∠ACB,∠BAD=∠CAE,∠ABD=∠ACE,求证:AD=AE.
如图,梯形ABCD中,AD∥BC,BF⊥AD,CE⊥AD,且AF=EF=ED=5,BF=12,动点G从点A出发,沿折线AB-BC-CD以每秒1个单位长的速度运动到点D停止.设运动时间为t秒,△EFG的面积为y,则y关于t的函数图象大致是( )
16的平方根是( )
A、 B、4 C、 D、2
将一张正方形纸片如图所示折叠两次,并在上面剪下一个菱形小洞,纸片展开后( )
建筑物上有一旗杆,由距的处观察旗杆顶部的仰角为600,观察底部的仰角为,求旗杆的高度.