题目内容
小明有黑色、白色、蓝色西服各一件,有红色、黄色领带各一条,从中分别取一件西服和一条领带,则小明穿黑色西服打红色领带的概率是 .
新吴区举行迎五一歌咏比赛,组委会规定:任何一名参赛选手的成绩ⅹ需满足60≤ⅹ<100,赛后整理所有参赛选手的成绩如下表.根据表中提供的信息得到n=__________.
如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=∠BFD.
(1)求证:FD是⊙O的一条切线;
(2)若AB=10,AC=8,求DF的长.
在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其它均相同,从袋中随机摸出一个球,记下颜色后放回.通过大量重复摸球试验后发现,摸到红球的频率在25%附近摆动,则口袋中的白球可能有( )
A. 12个 B. 13个 C. 15个 D. 16个
小明和小军两人一起做游戏,游戏规则如下:每人从1,2,…,8中任意选择一个数字,然后两人各转动一次如图所示的转盘(转盘被分为面积相等的四个扇形),两人转出的数字之和等于谁事先选择的数,谁就获胜;若两人转出的数字之和不等于他们各自选择的数,就在做一次上述游戏,直至决出胜负.若小军事先选择的数是5,用列表或画树状图的方法求他获胜的概率.
在一个不透明的口袋中装有8个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在40%附近,则口袋中白球可能有________个.
做重复试验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为( )
A. 0.22 B. 0.42 C. 0.50 D. 0.58
如图,□ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合.若△ACD的面积为3,则图中阴影部分的面积为___________.
太仓市为了加快经济发展,决定修筑一条沿江高速铁路,为了使工程提前半年完成,需要将工作效率提高25%。原计划完成这项工程需要多少个月?
【答案】30个月
【解析】试题分析:设原计划完成这项工程需要x个月,由等量关系“工程提前6个月完成,需将原定的工作效率提高25%”列出方程求解即可
【解析】设原计划完成这项工程需要x个月,由题意得,
,
解得x=30.
经检验x=30是原方程的根.
答:原计划完成这项工程需要30个月
点睛:列分式方程解应用题,首先应根据题意设出合理的未知数,然后结合已知条件找出题中的等量关系,进而列出分式方程进行求解即可,最后不要忘了验根.解工程类问题时,认真审题,理清各工作量之间的关系,能帮助我们快速的列出分式方程.
【题型】解答题【结束】27
如图,E为正方形ABCD对角线BD上的一点,且BE=BC=1.
(1)求∠DCE的度数;
(2)点P在EC上,作PM⊥BD于M,PN⊥BC于N,求PM+PN的值.